Embedded_game/QR/K-means/qr_K-means_ok.py

105 lines
3.5 KiB
Python
Raw Permalink Normal View History

2025-01-02 12:48:11 +08:00
# -*- coding: utf-8 -*-
# @Time : 2024/2/18 14:45
# @Author : len
# @File : find_qr_block_2.py
# @Software: PyCharm
# @Comment :
import os
import cv2
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from tqdm import tqdm
def qr_KMeans(image):
# 计算中心区域的坐标
height, width = image.shape[:2]
center_region = image[height // 4: 3 * height // 4, width // 4: 3 * width // 4]
# 将中心区域的颜色空间从BGR转换到HSV
center_hsv = cv2.cvtColor(center_region, cv2.COLOR_BGR2HSV)
# 将中心区域图像数据重塑为二维数组 pixels (center_height*center_width, num_channels)
center_pixels = center_hsv.reshape((-1, 3))
# 应用K-means聚类来找到中心区域的两种主要颜色
kmeans = KMeans(n_clusters=2, random_state=0, n_init=10).fit(center_pixels)
dominant_colors = kmeans.cluster_centers_.astype(int)
# for color in dominant_colors:
# print(color)
# 确定前景色的颜色范围
# 这里我们选择距离黑色(或白色)最远的颜色作为前景色
foreground_color = max(dominant_colors, key=lambda c: cv2.norm(c, cv2.NORM_L2))
# 转换整个图像到HSV空间
hsv_image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
fig, axs = plt.subplots(1, len(dominant_colors) + 2, figsize=(20, 6))
# 在第一个位置显示原图
axs[0].imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
axs[0].set_title('Original Image with Contours')
axs[0].axis('off')
axs[0].set_xticks([])
axs[0].set_yticks([])
for idx, color in enumerate(dominant_colors):
# 创建HSV颜色范围
lower_val = np.clip(color - np.array([10, 30, 30]), 0, 255)
upper_val = np.clip(color + np.array([10, 255, 255]), 0, 255)
# 创建颜色范围内的掩码
mask = cv2.inRange(hsv_image, lower_val, upper_val)
# 寻找轮廓
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# 在原图上画出轮廓
if idx == 0:
cv2.drawContours(image, contours, -1, (255, 0, 0), 2)
else:
cv2.drawContours(image, contours, -1, (0, 255, 0), 2)
mask_inv = cv2.bitwise_not(mask) # 黑白取反
# kernel = np.ones((5, 5), np.uint8)
# erosion = cv2.erode(mask_inv, kernel, iterations=1)
# dilation = cv2.dilate(erosion, kernel, iterations=1)
# erosion = cv2.erode(dilation, kernel, iterations=1)
# 显示掩码
idx += 2
axs[idx].imshow(mask_inv, cmap='gray')
axs[idx].set_title('Mask of Color: {}'.format(color))
axs[idx].axis('off')
axs[idx].set_xticks([])
axs[idx].set_yticks([])
# 在第一个位置显示原图
axs[1].imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
axs[1].set_title('Original Image with Contours')
axs[1].axis('off')
axs[1].set_xticks([])
axs[1].set_yticks([])
# 显示结果
plt.tight_layout()
plt.show()
# input_path = r"./android_img/qr_kmeans_img"
# image_files = [f for f in os.listdir(input_path) if f.endswith(('.png', '.jpg', '.jpeg'))]
#
# for image_path in tqdm(image_files):
# image_full_path = os.path.join(input_path, image_path)
# image = cv2.imread(image_full_path)
# if image is not None:
# qr_KMeans(image)
# else:
# print(f"Failed to load image: {image_path}")
input_path = r"./data/img_1.png"
# input_path = r"./data/img.png"
image = cv2.imread(input_path)
qr_KMeans(image)