Embedded_game/002_B_Car/交通灯len模型.py

83 lines
2.3 KiB
Python
Raw Normal View History

2025-01-02 12:48:11 +08:00
# -*- coding:utf-8 -*-
# @Author len
# @Create 2023/12/5 10:16
# Untitled - By: nian0 - 周一 11月 20 2023
import sensor, image, lcd, time
from fpioa_manager import fm
import KPU as kpu
import gc
from Maix import GPIO
from machine import Timer, PWM, UART, Timer
# 摄像头初始化
sensor.reset()
sensor.set_pixformat(sensor.RGB565)
sensor.set_framesize(sensor.QVGA)
sensor.set_vflip(1) # 摄像头后置方式
sensor.set_pixformat(sensor.RGB565) # 设置像素格式为彩色 RGB565
#sensor.set_pixformat(sensor.GRAYSCALE) # 设置像素格式为灰色
sensor.set_framesize(sensor.QVGA) # 设置帧大小为 QVGA (320x240)
sensor.set_auto_gain(False)
sensor.set_auto_whitebal(False)
sensor.set_auto_gain(0,0)
# 初始化 LCD
lcd.init()
def Servo(angle):
'''
说明舵机控制函数
功能180度舵机angle:-90至90 表示相应的角度
360连续旋转度舵机angle:-90至90 旋转方向和速度值
duty占空比值0-100
'''
#PWM通过定时器配置接到IO17引脚
tim_pwm = Timer(Timer.TIMER0, Timer.CHANNEL0, mode=Timer.MODE_PWM)
S1 = PWM(tim_pwm, freq=50, duty=0, pin=17)
S1.duty((angle+90)/180*10+2.5)
Servo(15)
# 从SD卡加载模型
# task = kpu.load("/sd/model-96249.kmodel")
labels = ['green', 'light', 'yellow', 'red']
anchors = [0.88, 3.47, 0.69, 0.81, 0.97, 3.47, 1.12, 3.75, 1.25, 4.19]
while True:
task = None
task = kpu.load(0x300000)
# 初始化yolo2网络识别可信概率为0.770%
a = kpu.init_yolo2(task, 0.7, 0.3, 5, anchors)
img = sensor.snapshot()
# 调整图像大小
img = img.resize(224, 224)
# # 在LCD屏幕上显示图像
# lcd.display(img)
# 准备图像进行推理
img.pix_to_ai()
code = kpu.run_yolo2(task, img) # 运行yolo2网络
print(code)
if code:
for obj in code:
pos = obj.rect()
print(labels[obj.classid()])
img.draw_rectangle(pos)
img.draw_string(pos[0], pos[1], "%s : %.2f" %(labels[obj.classid()], obj.value()), scale=2, color=(255, 0, 0))
#comm.send_detect_result(code, classes)
#img.draw_string(0, 200, "t:%dms" %(t), scale=2, color=(255, 0, 0))
a = lcd.display(img)
else:
a = lcd.display(img)
if not task is None:
kpu.deinit(task)