41 lines
1.0 KiB
Python
41 lines
1.0 KiB
Python
|
# -*- coding:utf-8 -*-
|
||
|
# @Author len
|
||
|
# @Create 2023/10/28 20:35
|
||
|
|
||
|
import cv2
|
||
|
import numpy as np
|
||
|
|
||
|
# 读取图片
|
||
|
image = cv2.imread('exp6/crops/polygon/022.jpg')
|
||
|
|
||
|
# 将图片从BGR转换到HSV色彩空间
|
||
|
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
|
||
|
|
||
|
# 为蓝色定义HSV范围
|
||
|
lower_blue = np.array([100, 50, 50])
|
||
|
upper_blue = np.array([140, 255, 255])
|
||
|
|
||
|
# 使用HSV范围来创建一个蓝色的mask
|
||
|
mask = cv2.inRange(hsv, lower_blue, upper_blue)
|
||
|
|
||
|
# 使用高斯模糊减少噪声
|
||
|
blurred = cv2.GaussianBlur(mask, (5, 5), 0)
|
||
|
|
||
|
# 使用Canny边缘检测
|
||
|
edges = cv2.Canny(blurred, 50, 150)
|
||
|
|
||
|
# 在边缘图像上找到轮廓
|
||
|
contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
||
|
|
||
|
for contour in contours:
|
||
|
# 过滤轮廓,例如根据轮廓的大小或形状
|
||
|
if cv2.contourArea(contour) > 100: # 根据需要调整阈值
|
||
|
x, y, w, h = cv2.boundingRect(contour)
|
||
|
cv2.rectangle(image, (x, y), (x+w, y+h), (0, 255, 0), 2)
|
||
|
|
||
|
# 显示结果
|
||
|
cv2.imshow('Detected Blue Square', image)
|
||
|
cv2.waitKey(0)
|
||
|
cv2.destroyAllWindows()
|
||
|
|