# -*- coding:utf-8 -*- # @Author len # @Create 2023/10/28 20:35 import cv2 import numpy as np # 读取图片 image = cv2.imread('exp6/crops/polygon/022.jpg') # 将图片从BGR转换到HSV色彩空间 hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) # 为蓝色定义HSV范围 lower_blue = np.array([100, 50, 50]) upper_blue = np.array([140, 255, 255]) # 使用HSV范围来创建一个蓝色的mask mask = cv2.inRange(hsv, lower_blue, upper_blue) # 使用高斯模糊减少噪声 blurred = cv2.GaussianBlur(mask, (5, 5), 0) # 使用Canny边缘检测 edges = cv2.Canny(blurred, 50, 150) # 在边缘图像上找到轮廓 contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for contour in contours: # 过滤轮廓,例如根据轮廓的大小或形状 if cv2.contourArea(contour) > 100: # 根据需要调整阈值 x, y, w, h = cv2.boundingRect(contour) cv2.rectangle(image, (x, y), (x+w, y+h), (0, 255, 0), 2) # 显示结果 cv2.imshow('Detected Blue Square', image) cv2.waitKey(0) cv2.destroyAllWindows()