# -*- coding:utf-8 -*- # @Author len # @Create 2023/10/27 15:24 import cv2 import numpy as np # 读取图像 image = cv2.imread('trafficLight_red.png') # 将图像转换为HSV色彩空间 hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) # 定义红色在HSV中的范围 lower_red_1 = np.array([0,50,50]) upper_red_1 = np.array([10,255,255]) lower_red_2 = np.array([160,50,50]) upper_red_2 = np.array([180,255,255]) # 创建掩码 mask1 = cv2.inRange(hsv, lower_red_1, upper_red_1) mask2 = cv2.inRange(hsv, lower_red_2, upper_red_2) mask = mask1 + mask2 # 对掩码进行腐蚀和膨胀操作,以消除噪声 mask = cv2.erode(mask, None, iterations=2) mask = cv2.dilate(mask, None, iterations=2) # 找到掩码中的轮廓 contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # 遍历轮廓并在原始图像上绘制 for contour in contours: if cv2.contourArea(contour) > 100: # 你可以根据需要调整这个值 x, y, w, h = cv2.boundingRect(contour) cv2.rectangle(image, (x, y), (x+w, y+h), (0, 255, 0), 2) # 显示结果 cv2.imshow('Detected Red Light', image) cv2.waitKey(0) cv2.destroyAllWindows()