Embedded_game/QR/K-means/002.py
2025-01-02 12:48:11 +08:00

84 lines
2.6 KiB
Python

import cv2
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
def qr_KMeans(image):
# 获取图像的高度和宽度
height, width = image.shape[:2]
# 将图像分为四部分,取右上角区域 (高度的一半和宽度的一半)
right_top_region = image[0:height // 2, width // 2:]
# 将右上角区域的颜色空间从BGR转换到HSV
right_top_hsv = cv2.cvtColor(right_top_region, cv2.COLOR_BGR2HSV)
# 将右上角区域图像数据重塑为二维数组 pixels (right_top_height * right_top_width, num_channels)
right_top_pixels = right_top_hsv.reshape((-1, 3))
# 使用KMeans聚类来找到右上角区域的两种主要颜色
kmeans = KMeans(n_clusters=2, random_state=0, n_init=10).fit(right_top_pixels)
dominant_colors = kmeans.cluster_centers_.astype(int)
# 打印颜色以供调试
for color in dominant_colors:
print(f"Dominant Color: {color}")
# 转换整个图像到HSV空间
hsv_image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
fig, axs = plt.subplots(1, len(dominant_colors) + 2, figsize=(20, 6))
# 在第一个位置显示原图
axs[0].imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
axs[0].set_title('Original Image with Contours')
axs[0].axis('off')
axs[0].set_xticks([])
axs[0].set_yticks([])
for idx, color in enumerate(dominant_colors):
# 创建HSV颜色范围
lower_val = np.clip(color - np.array([10, 30, 30]), 0, 255)
upper_val = np.clip(color + np.array([10, 255, 255]), 0, 255)
# 创建颜色范围内的掩码
mask = cv2.inRange(hsv_image, lower_val, upper_val)
# 寻找轮廓
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# 在原图上画出轮廓
if idx == 0:
cv2.drawContours(image, contours, -1, (255, 0, 0), 2) # 蓝色
else:
cv2.drawContours(image, contours, -1, (0, 255, 0), 2) # 绿色
# 取反显示掩码
mask_inv = cv2.bitwise_not(mask)
# 显示掩码
idx += 2
axs[idx].imshow(mask_inv, cmap='gray')
axs[idx].set_title(f'Mask of Color: {color}')
axs[idx].axis('off')
axs[idx].set_xticks([])
axs[idx].set_yticks([])
# 在第二个位置显示带有轮廓的原图
axs[1].imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
axs[1].set_title('Original Image with Contours')
axs[1].axis('off')
axs[1].set_xticks([])
axs[1].set_yticks([])
# 显示结果
plt.tight_layout()
plt.show()
# 载入图片
input_path = r"../data/img_1.png"
image = cv2.imread(input_path)
qr_KMeans(image)